2017 Functional Programming

Academic unit or major Graduate major in Mathematical and Computing Science
Instructor(s) Wakita Ken Masuhara Hidehiko
Course component(s) Lecture
Day/Period(Room No.) Mon5-6(W831) Thr5-6(W831)
Group -
Course number MCS.T502
Credits 2
Academic year 2017
Offered quarter 3Q
Syllabus updated 2017/4/3
Language used English
Syllabus

Course description and aims

The gift from decades of research and development activities of functional programming languages
includes efficient garbage collection, type-directed optimization, and closure conversions. These
techniques are starting to be incorporated in programming languages from non-functional paradigms
such as C++ and Java, promoting more "functional style" in general programming.

When we see programs written in functional programming languages and shocked at its beauty and
simplicity, we may wonder its execution efficiency. In this course, we jump into an implementation of a
working compiler for a functional programming language and learn techniques to gradually
converting highly abstract description of the functional-style program to lower level executable code,
through series of conversions. These conversions are defined over well-defined interfaces: from
upper-lever abstract interface down to lowest-level machine description are abstract syntax trees, K-
normal forms, closure language, virtual machine.

Students will be exposed to one of the best example of systematically organized software project
which deals with software complexity with formalism, layers of abstraction, and machine
independence.

Student learning outcomes

Students will learn

1) a functional programming language,

2) methodologies of functional programming,

3) organization of a compiler for a functional programming language

During the course, we read a compiler of a tiny functional programming language, called MinCaml,
which is written in a functional programming language called OCaml. From this experience, we can
learn (1) an organization of middle-scale software project, (2) that highly abstract description of is
gradually transformed down to lower-level representation passing through abstraction layers, (3)
techniques to balance between description power and execution efficiency.

Keywords

Functional programming, compiler organization, OCaml

Competencies that will be developed

Intercultural | Communication | Specialist : Critical thinking Practical and/or problem-
skills skills skills skills solving skills
- - v - -
Class flow

The course gives lectures for the first four weeks.

For the rest, students choose parts of the compiler components and explain the implementation.
Each class starts with students' explanation, followed by the instructor's brief overview for next

components that are covered in the coming class.

Course schedule/Required learning

Course schedule

Required learning

Class 1T i Overview

Guidance

Introduction to functional programming in OCami

Class 2 0 Primitive data types, compound data
types, algebraic data types.
Introduction to functional programming in OCaml Recursive data structures, recursive
Class 3 . . .
(2) functions, higher-order functions,
mutable states.
| i f ional ing i [. .
Class 4 ntroduction to functional programming in OCam Records, exception handling, modules,

(3)

standard library, tools

Class 5 | Software architecture of the MinCaml compiler

MinCaml is a tiny functional
programming language and is
implemented in a functional
programming language OCaml.

Class 6 | From program to abstract syntax tree

Lexical analysis and parsing.

Class 7 i Type analysis

Type analysis, type inference,
unification

Class 8 | From abstract syntax tree to K-normal form

K-normal form, alpha-conversion

Class 9 | Optimization(1)

Beta-reduction, reduction of nested
let's, inline code expansion

Course schedule Required learning
Class 10 : Optimization (2) Constant folding, elimination of
redundant definitions
Class 11 i Elimination of functional closures .
Closure conversion
Class 12 i Generation of abstract machine code Abstract machine code generation
Class 13 ;| Register assignment Register assignment
Class 14 : Generation of executable code Generation of assembly code, runtime
system
Class 15 { Wrap up Wrap up
Textbook(s)
Unfixed

Reference books, course materials, etc.

Courseware will be provided on GitHub. GitHub repository information is found on OCW-i.
http://esumii.github.io/min-caml/index7.html
http://esumii.github.io/min-caml/paper.pdf

Assessment criteria and methods

Students will be assessed on their understanding of functional programming and organization of a
compiler for a tiny functional programming language. There is no term-end examination.

Related courses

MCS.T213 :

MCS.T224 : Programming |
MCS.T303 : Programming Il
MCS.T334 : Compiler Construction
CSC.T372 : Compiler Construction

Introduction to Algorithms and Data Structures

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Basic understanding of algorithms and data structures, and fluency with at least one programming
language are required.

